大婷电子分析网

主页
分享数据分析资讯
大婷电子分析网-书数据挖掘,人工智能

数据中台建设的步骤层面数据中台实战(八):如何打造可以支撑N条产品线的标签平台

更新时间:2022-01-15 09:09:22点击:

▲ 点击改变世界的产品经理关注***

回复“1”抽取签名书

上一篇数据中台的实战文章讲了《数据中台实战(七):流量分析》,这次讲如何打造可以支撑N条产品线的标签平台。全文8000+字,全是实战干货。

5个关键步骤

— 1 —

数据中台在具体落地实施时,要结合技术、产品、数据、服务、运营等5个方面,逐步开展相关的工作,在构建闭环时会多考虑基础设施部分的能力。一旦闭环建设完成,就可以在各个环节不断丰富能力,逐步成为数据应用的完整体系。根据笔者的实践经验,数据中台的建设过程主要通过5个关键步骤来完成。

为什么要建设标签平台

数据中台建设的步骤层面

(1)理现状

亚马逊的CEO Jeff Bezos曾说过他的梦想,「如果我有一百万的用户,我就会做一百万个不同的网站!」。当然现在大型的电商公司如亚马逊、淘宝等已经实现了他这个梦想,就是我们常说的千人千面-用户个性化推荐系统。那么如何实现千人千面呢,做这个基础是先对用户打标签。为什么要给用户打标签呢?最主要原因就是让我们更加了解我们的用户,他是谁?他在哪里?他用的什么设备?他用了我们的什么服务?他的使用习惯是什么?他的偏好是什么?当我们更加了解我们的用户,我们才会有可能知道他的痛点,我们才会知道应该推荐给他什么样的产品,他购买的概率也才会更高一些。

梳理企业的系统建设、已经拥有的数据以及业务特点等现状,了解企业对数据中台的认知,以及相应的数据文化建设情况。点对点地与业务部门、IT部门进行沟通,获取企业的产品和服务信息,形成业务现状调研报告,同时了解目前企业以怎样的组织形态来保证客户的服务能力。详细调研目前企业的IT建设情况和业务数据沉淀情况,比如采用的什么数据库、数据量、数据字段和更新周期等,以便后续更好地设计技术架构。

(2)立架构

根据现状形成整体的规划蓝图,形成技术产品、数据体系、服务方式以及运营重点等相关的方案,梳理并确立各块架构。企业信息架构经常谈到的4A,即业务架构、技术架构、应用架构和数据架构都需要在这个阶段进行确认。这4个架构具体介绍如下:

·业务架构:保障数据中台能够适用于企业的业务运营模型和流程体系

·技术架构:主要是指技术体系中的数据基座,主要根据业务架构近远期规划,对数据的存储和计算进行统一的选型。

·应用架构:特指数据中台应用架构,后面几个关键步骤的内容所依赖的工具主要由数据中台作为平台应用来承接。

·组织架构:主要是保证中台项目的顺利落地需要企业考虑的整体组织保障,其中的角色有业务人员、IT人员、供应商和相关负责人。

那么什么公司适合建设标签平台?对于一些小的创业公司是不适合的。现在的产品和运营张口闭口就是户画像、用户标签和ppt上面贴满标签的标签云人像。一个真正得到标签平台是一个非常浩大的工程,它需要投入很多的开发资源,就只是一个标签体系的建立都需要,n个角色参与(数据开发工程师,数据挖掘工程师,前端工程师、后端工程师、产品经理、模型设计师),加上需求的调研时间,最少也得2-3个月的时间。后期比较深的一些功能如标签圈选、人群画像等又是很大的工程量。所以建立标签平台需要很大的工作量,投入很多的资源,前期也不能很快得到回报,是一个方向大致正确的事情。所以创业公司或者小型公司初期、用户量较少的公司还是不建议做标签平台,当公司有一定规模,用户量有一定基础、数据有一定的积累,再投入资源做标签平台还是不晚的。

(3)建资产

结合数据架构的整体设计,通过数据资产体系建设方法,帮助企业构建既符合场景需求又满足数据架构要求的数据资产体系并实施落地。这个步骤涉及数据汇聚、数据仓库建设、标签体系建设以及应用数据建设,其中最关键的是标签体系建设。所谓标签体系是面向具体对象构建的全维度数据标签,通过标签体系可以方便地支撑应用,大数据的核心魅力和服务能力主要就体现在标签体系的服务能力上。

(4)用数据

从应用场景出发,将已经构建的数据资产通过服务化方式,应用到具体的业务中,发挥数据价值。将数据资产快速形成服务能力并与业务进行对接,在业务中产生数据价值,实现数据的服务化、业务化。在服务过程中,数据安全是不得不考虑的问题,哪些人能看到什么数据资产,能选择什么类型的服务都是需要严格审核的。

—2—

建设标签平台你必须面对的几个问题

那我们该怎么建设标签平台呢?上面已经说了,当有了一定的用户基础、数据基础才适合搭建标签平台,这时会面临一个问题,当公司发展到搭建标签平台这么一个阶段,一定是多个产品线,多种角色、数据分散度很高的情况。那么怎么统一这些产品线的标签呢?

例如笔者所在的公司有n条产品线,我们想打通服装批发产业的上下游,从生产端服装的打版服务,到线上的销售平台,到供应链服务平台和金融服务平台等产业的上下游我们都在运营。我们在搭建标签平台时就遇到了以下个挑战:

(5)做运营

数据应用于业务后,其产生的价值通过运营的能力不断优化迭代,并让更多的人感知到数据的价值点。数据中台建设是一个持续建设和运营的过程,所谓持续建设和运营是指在架构基本稳定的情况下,不断循环3~5步,多方角色会围绕核心KPI不断挖掘数据和业务场景的结合点,不断根据质量和价值两个点来运营优化。企业通过多个组织之间的配合推进,会逐步形成企业特有的数据文化和认知,这是企业在数字化转型中非常重要但很难跨越的点。

1.每个系统都会产生大量的数据,怎么让这些数据标签化呢?

2.打版服务、电商服务、供应链服务、金融服务的客户群体是完全不同的,怎么让这些各种各样的角色都进去标签平台。

3.作为我们的电商产品,只有用户标签是不够的,商品作为电商系统十分重要的存在,也得分门别类的打上各种各样的标签,那么我们怎么区分用户标签和商品标签,甚至供应商的标签?

4.公司所有的产品线运营都会用一个crm系统,所有的客户都会先进去crm系统作为潜客,转化后再成为各个业务系统的会员统一进入业务系统,这就带来一个问题,潜客和注册用户怎么分?带着这样种种问题,我们团队大概策划了有半个月才有解决方案。

针对第一个问题,怎么基于各个业务线的数据给我们的用户都打上标签。首先我们有平台的概念,用户注册后,会统一进入用户中心,入库时都会打上注册平台的标识,这里做了一层区分。后来我们发现这样无法解决一个用户同时用了2个平台服务的问题,因为我们用户中心是是基于***去重复的数据,如果只取某个平台的用户,就无法给用了我们电商产品又用了我们的物流、快递产品的用户同时打上标签,这时我们加大了每个产品线打标签的用户范围,举个例子比如电商产品的用户定义是取平台为电商产品,但是平台为非电商产品又登录了电商产品的用户也会抓取过来打上电商产品相应的标签。这样当我们查看用户的标签时,就可以看到这些用户同时拥有2条产品线的标签。至于每个业务线的数据怎么标签化,我们的想法是做成可配置化,每条产品线的运营都可以在他们的业务线下建立各种各样的标签,来丰富用户的信息,至于如何实现可配置化,下文标签体系的搭建我会基于电商RFM的实际案例来讲解。

针对第二个问题,这些用户的角色怎么确定。首先我们针对不同的客户群体我们做了一层抽象,他们首先都是人,我们称为需求端和供应端。比如电商产品的采购商为需求端,供应商为供应端,快递物流产品的商户(需要发快递或者物流的人)我们称为采购端,物流快递的提供者如顺丰、德邦等我们称为供应端,打版产品的设计师为需求端,生产衣服的工厂为供应端,这样就完成了一个抽象。接下来要做的就是让各个业务线的运营去划分,他们业务线到底有那些角色,怎么给他们产品线的人打上角色的标签,这样也同时倒逼我们的业务线统一目标用户的标准,很多公司都有这么一种情况,每个人都大概知道自己的目标用户的大概样子,但是当每个描述自己所讲的目标用户的样子时,是完全不同的。这是为什么?因为大家没有统一的标准。如电商产品我们就让运营出了一套标准 一批采购商,二批采购商,普通终端门店,c端消费者,我们把用户的类型做了比较细致的描述,比如他的拿货价位,开店数量等等,我们基于用户填的信息自动会给这个采购商一个身份标识。当你抽象成一个人时,埋点的数据也能用上了,我们已经针对各个产品线做了数据埋点,这些埋点收集到了用户潜在的信息,如地理位置、设备信息等我们都作为基础属性放在标签体系中。

针对第三个问题,用户标签和商品标签的问题。我们针对标签定义了一个类型,在生成标签时,我们预先定义了有用户标签、商品标签,每个标签都要选择一个类型。商品标签和用户标签类似也有一些基础属性,如颜色、尺码、面料等属性,这些基础属性我们叫做基础标签,用户的基础标签直接从用户属性字段和埋点数据取得,商品的基础标签直接从商品的属性字段取得。

针对第四个问题,潜客和注册会员该如何区分,我们增加了一个标签,是否潜客。在crm系统录入的用户且不在用户中心的用户我们都当潜客处理,crm针对潜客又有一套标签也是一个漏斗的关系,从有销售线索、商机识别、商务谈判、签约下单,这些用户的状态我们会从crm系统直接拿过来,针对潜客打上状态标签。

数据中台建设的步骤层面数据中台实战(八):如何打造可以支撑N条产品线的标签平台(图2)

—3—

如何建设可以支撑N条产品线的标签平台

这样我们标签平台的目标就很明确了:

1.我们的标签平台要可以支撑给n条产品线,n种角色打标签

2.一个用户如果在n个产品产生了行为记录,都要通过标签记下来。可以看到用户在N条产品线打的标签。

3.每条产品都可以自己定义自己的个性化标签

4.标签要支持给注册用户打标签,同时还要支持给潜客打标签

基于这个目标,我们的标签平台规划了以下这四个功能:

1.数据宽表

2.标签体系的搭建

3.标签工厂

4.用户群圈选

从标签的生成到人群的圈选整个流程如下:

数据中台建设的步骤层面数据中台实战(八):如何打造可以支撑N条产品线的标签平台(图3)

第一步是准备数据宽表,对于电商产品来说,需要采购商宽表、商品宽表、供应商宽表。宽表其实就是单个用户(采购商、供应商)、商品指标的一个合集,我们尽量把所有的指标都汇聚到一张表,方便接下来的标签的生成。用户的宽表包含用户的基础信息、行为信息、业务指标等,用户的基础信息就包括用户的***、姓名、性别、注册时间、用户的角色信息、平台信息和其他用户自己填的信息。用户的行为信息就包括用户的设备信息、地理位置、用户的访问时长、加购次数、收藏次数、距离上次访问时长等通过埋点得到的信息。还有就是用户的业务信息,包括用户下单金额、支付金额、优惠金额等信息。商品的宽表包括商品的基础信息和商品的业务信息。在电商商品中商品的基础信息包含,商品的ID、名称、品类、颜色、尺码等上架商品时填的一些信息。商品的业务信息包括商品的下单金额、支付金额、加购金额、加购次数等业务指标。

有了宽表的数据,接下来就可以创建标签体系,并将标签工厂制作的标签归入标签体系。首先看一下标签体系是什么,标签体系的结构大致如下:

数据中台建设的步骤层面数据中台实战(八):如何打造可以支撑N条产品线的标签平台(图4)

标签体系一般是多层结构,基础信息和每条产品线的第1级标签由数据中台管理,我们拿用户端的标签举个例子,无论用户是采购端和供应端,他首先是一个人,那么我们就抽取出来了人的基础信息,包括:

平台的信息:用过我们那个产品线的服务就会打上那个平台的标签

用户类型:采购端还是供应端?如果是采购端,他是什么样的角色。如果是供应端,他又是什么样的角色。

潜客:是否潜客,如果是潜客,他现在处于什么状态?

地理位置:通过埋点采集到的信息,他的城市、省份在哪里

设备信息:通过埋点采集到的信息包括浏览器的版本、设备版本、系统版本等信息。

接下来就是各个产品线的业务标签,第一级一般来说也是由数据中台提前定义好,比如我们有电商产品线、打版产品线、供应链产品线。那么我们的第一级就是电商服务、打版服务、供应链服务。下面的具体标签就可以由各个产品线自己定义个性化的业务标签。

数据中台建设的步骤层面数据中台实战(八):如何打造可以支撑N条产品线的标签平台(图5)

为什么要建立标签体系呢,一方面是公司所有的产品线都用这个体系,有一个统一的标准,降低沟通成本。另外一方面通过这个标签体系可以全局的看公司都用哪些标签,甚至哪些用户用了我们那些服务,哪些用户存在多个角色,这个也是数据中台打通公司数据的一个体现。

接下来我们看一下怎么定义业务标签,首先要选择平台,平台是为了查看用户标签时给运营分别赋不同的权限,比如产品线A的运营不能看见产品线B的标签。接下来是选择维度,还是用户维度的标签还是商品维度的标签,这个决定数据源的选择,也就是上文讲到的宽表的选择。那么接下来就是选择一级标签和二级标签把新的标签归入标签体系,这样所有的标签都可以在我们标签体系中看到。下面就是最核心的定义标签,比如我们要给产品线A的新用户打上标签,新用户是根据他的注册天数这个指标来定义的,我们就可以这个规则来筛选出来应该给那些用户打上新用户的标签。接下来就是标签的定义,可以选择用户宽表或者商品宽表的指标进行等于、大于、小于等简单的运算,这样一个标签的定义就完成了。

数据中台建设的步骤层面数据中台实战(八):如何打造可以支撑N条产品线的标签平台(图6)

一般来说做营销活动会针对特定的人群,人群其实就是标签的组合,我们做了人群圈选这么一个功能。人群的圈选分为三种方式,第一种是基于用户客观标签的圈选,另外一种是基于用户行为的圈选,还有一种是基于用户主观标签的圈选。


先讲一下基于用户客观标签的圈选,比如我们要针对广州市的新用户做一个发优惠刺激他们下单的触达任务,那么这里广州市的新用户就有由二个标签组成的一个用户群体。那么我们首先在标签工厂定义好广州市的用户这个标签,也就是用户的所在城市是广州,接下来是新用户,比如注册7天内的用户。那么接下来要做一个且的操作,广州的用户且是注册时间在7天内。我们的用户圈选功能支持且、或的简单操作,接下来就要选择计算频率,是每天计算一次,还是只计算一次,针对我们这个任务我们是一个固定的规则,我们想针对所有广州市注册的新用户都发一个短信提醒用户领取优惠券,那么我们可以选择每天都计算一次,如果我们的推送平台满足可以每天定时针对这批用户群发触达任务,那么我们就完全做成了自动化。如果选择只计算一次,那么这个计算任务就会执行一次,这个人群计算一次就固定了,再过多天后再来查看这批人还是第一次计算的那批人,这样方便追踪活动效果,比如7天前圈出一批人做了一场活动,那么7后再拿出这批人看下这批人各项指标的变化情情况。

数据中台建设的步骤层面数据中台实战(八):如何打造可以支撑N条产品线的标签平台(图7)

还有一种是基于用户行为的圈选,这个是要结合埋点数据。用户的行为分为浏览和点击。我们需要基于每天的埋点数据去重,计算出当天有哪些页面和和按钮。浏览有哪些页面呢?在电商产品中主要有这么几个页面:首页、商品列表页、商品详情页、进货车页、下单页、支付页,关键的按钮有哪些呢?主要有:收藏、加购、下单、支付。另外因为我们的埋点数据是分端采集的,那么我们也可以分端去筛选出浏览和点击事件。比如我们要做一个基于H5的活动,活动中我们要实时监控访问我们H5的人都有那些,H5上的关键按钮有那些人点击,活动一般都很短暂,所以我们对时效性要求比较高的,需要准实时的圈出访问该活动页和点击加购却没有下单的人。那么我们的第一个条件就是访问了H5页面的人,第二个条件是点击了加购按钮,第三个条件是没有下单的人。这三个条件之间是的关系。基于用户行为的标签一般来说都是只计算一次,属于客观标签。这样我们就圈出了参加这个活动加购了但是没有下单的人,我们再研究一下他们为什么不单,对于那些价格敏感的客户,再结合全渠道营销平台推一条短信,发一个优惠券刺激一下说不定这个用户就下单了。

数据中台建设的步骤层面数据中台实战(八):如何打造可以支撑N条产品线的标签平台(图8)

当然还可以两者结合,比如我们要圈出性别为男的用户并且累计花销在3000元的用户并且在2019年11月21日做过登录并点击过某个按钮的用户。

数据中台建设的步骤层面数据中台实战(八):如何打造可以支撑N条产品线的标签平台(图9)

还有一种圈选方式是基于主观人群的圈选。这个一般给运营或者一线的销售用。当他们做***回访,或者上门拜访后得到的一些关键信息,都可以用标签的形式记录到这个用户身上。主观人群还有一种使用场景是运营一般会有大批量操作用户或者商品的情况,比如发优惠券时可以基于标签去发而不是一个一个用户的去选择,这样可以给你发优惠券的用户打上一个主观标签,在发券系统选择这个标签来代替这些用户来发券。我们设计了2个功能,第一个是可以任意选择单个用户打上主观人群标签,这个功能一般要对外提供接口对接其他一线业务人员使用的系统,直接打标签到数据中台标签平台。还有一个功能是针对大批量用户,我们可以通过导入***的方式批量给用户打上主观人群标签。

数据中台建设的步骤层面数据中台实战(八):如何打造可以支撑N条产品线的标签平台(图10)

无论通过哪种方式,都可以圈出来一批人,最终圈选出来的用户就如下图所示。我们可以查看每个用户群每天计算出的用户数量,也可以查看具体的用户有哪些。人群圈选的功能一般要和其他平台对接一般要对外提供以下几个接口:

1.通过群组名称查用户或者商品列表

2.通过当个用户或者商品查询所属人群

关于主观标签、只计算一次的客观标签,随着时间的增加,会产生越来越多的标签,会显得十分混乱,另外也增加很多的存储成本。有些标签可能是n年前打上的,到现在已经没有任何用,举个简单的例子我们常用到的一类标签是复购高意向用户,比如半年前我们圈出了这批用户,那么这个复购高意向标签就打在了这批用户的身上,说不定这个用户已经流失,或者现在不是复购高意向用户了,那么我们要想办法对以前打的复购高意向的标签进行处理。我在这里提供三种方案:

1.给标签针对每个用户增加一个有效性的属性,这就需要写一个定时计算任务,每天检查用户标签的有效性,如果这个标签当时计算时还有效,那么就打上有效的标识,如果当时计算时候标签已经不适用,就打上无效的标识。那么我们前端取数据时只取有效的标签。这个方案的问题是我们无法判定主观标签的有效性,因为主观标签是没有什么规则的。

2.给每个标签一个属性,启用和禁用,当运营觉得这个标签没用时就禁用,一旦禁用我们展示用户标签时就展示没有禁用的标签,只显示开启的标签,这样运营的同事看到的都是自己觉得有效的标签。这个方案的问题就是增加了运营的工作量,当后期有很多标签时,工作量会比较大。

3.还有一种方式是在运营创建人群时,选择一个有效期,比如45天,当这个标签过了45天就自动失效,前端只展示用户未失效的标签。这种方式对于数据量比较大的公司来说是有必要的,比如百度他们每天都有几十万甚至几百万的人用他们DMP人群圈选功能,那么每天会产生大量的数据,有效期还是必要的,会减少大量的存储成本。

做完了标签,接下来就可以做用户画像的应用。用户画像分为个人用户画像,群体用户画像。

先讲一下个人用户画像。这个是给客服、销售或者运营查大客户的资料时用到,个人用户画像最好能汇聚用户所有信息,当我们更加了解这个人的时候,我们会更加容易刺激他产生购买行为。个人用户画像的内容分为几部分:

第一部分是用户的基础信息。他是谁,他在哪里,用了什么设备,他的一些关键的数据指标有那些,比如RFM的属性都是什么。

第二部分是他的业务信息。比如电商产品他的加购信息、收藏信息、领券信息、下单信息等,这里可以给出他的明细数据,比如加购什么时候加购、加购了几件商品、加购了那些商品,当然信息是越详细越好。

第三部分是用户标签信息。标签分为主观标签和客观标签,我们可以分开展示。接下来就是分产品线展示每个产品线的标签。如果一个用户用了产品线A同时又用产品线B,那么我们可以一眼看出,用户在产品线A和产品线B都有标签。如果用户只用产品线A,那么在产品线B那里就看不见标签。

第四部分是用户的行为信息,这里用到埋

推荐文章