大婷电子分析网

主页
分享数据分析资讯
大婷电子分析网-书数据挖掘,人工智能

【数据挖掘】手把手教你做文本挖掘

更新时间:2021-12-28 03:09:57点击:

一、文本挖掘定义

文本挖掘指的是从文本数据中获取有价值的信息和知识,它是数据挖掘中的一种方法。文本挖掘中最重要最基本的应用是实现文本的分类和聚类,前者是有监督的挖掘算法,后者是无监督的挖掘算法。

二、文本挖掘步骤

1)读取数据库或本地外部文本文件

2)文本分词

2.1)自定义字典

2.2)自定义停止词

2.3)分词

2.4)文字云检索哪些词切的不准确、哪些词没有意义,需要循环2.1、2.2和 2.3步骤

3)构建文档-词条矩阵并转换为数据框

4)对数据框建立统计、挖掘模型

5)结果反馈

三、文本挖掘所需工具

本次文本挖掘将使用R语言实现,除此还需加载几个R包,它们是tm包、tmcn包、Rwordseg包和wordcloud包。

四、实战

本文所用数据集来自于sougou实验室数据,具体可至如下链接下载:

http://download.labs.sogou.com/dl/sogoulabdown/SogouC.mini.20061102.tar.gz

本文对该数据集做了整合,将各个主题下的***汇总到一张csv表格中,数据格式如下图所示:

【数据挖掘】手把手教你做文本挖掘(图1)

具体数据可至文章后面的链接。

#加载所需R包 library(tm) library(Rwordseg) library(wordcloud) library(tmcn) #读取数据 mydata <- read.table(file = file.choose(), header = TRUE, sep = ',', stringsAsFactors = FALSE) str(mydata)

【数据挖掘】手把手教你做文本挖掘(图2)

接下来需要对***内容进行分词,在分词之前需要导入一些自定义字典,目的是提高切词的准确性。由于文本中涉及到军事、医疗、财经、体育等方面的内容,故需要将搜狗字典插入到本次分析的字典集中。

#添加自定义字典 installDict(dictpath = 'G:\\dict\\财经金融词汇大全【官方推荐】.scel', dictname = 'Caijing', dicttype = 'scel') installDict(dictpath = 'G:\\dict\\军事词汇大全【官方推荐】.scel', dictname = 'Junshi', dicttype = 'scel') installDict(dictpath = 'G:\\dict\\篮球【官方推荐】.scel', dictname = 'Lanqiu', dicttype = 'scel') installDict(dictpath = 'G:\\dict\\旅游词汇大全【官方推荐】.scel', dictname = 'Lvyou', dicttype = 'scel') installDict(dictpath = 'G:\\dict\\汽车词汇大全【官方推荐】.scel', dictname = 'Qiche1', dicttype = 'scel') installDict(dictpath = 'G:\\dict\\汽车频道专用词库.scel', dictname = 'Qiche2', dicttype = 'scel') installDict(dictpath = 'G:\\dict\\医学词汇大全【官方推荐】.scel', dictname = 'Yixue', dicttype = 'scel') installDict(dictpath = 'G:\\dict\\足球【官方推荐】.scel', dictname = 'Zuqiu', dicttype = 'scel') #查看已安装的词典 listDict()

【数据挖掘】手把手教你做文本挖掘(图3)

如果需要卸载某些已导入字典的话,可以使用uninstallDict()函数。

分词前将中文中的英文字母统统去掉。

#剔除文本中含有的英文字母 mydata$Text <- gsub('[a-zA-Z]','',mydata$Text) #分词 segword <- segmentCN(strwords = mydata$Text) #查看第一条***分词结果 segword[[1]]

【数据挖掘】手把手教你做文本挖掘(图4)

图中圈出来的词对后续的分析并没有什么实际意义,故需要将其剔除,即删除停止词。

#创建停止词 mystopwords <- read.table(file = file.choose(), stringsAsFactors = FALSE) head(mystopwords) class(mystopwords) #需要将数据框格式的数据转化为向量格式 mystopwords <- as.vector(mystopwords[,1]) head(mystopwords)

【数据挖掘】手把手教你做文本挖掘(图5)

停止词创建好后,该如何删除76条***中实际意义的词呢?下面通过自定义删除停止词的函数加以实现。

#自定义删除停止词的函数 removewords <- function(target_words,stop_words){ target_words = target_words[target_words%in%stop_words==FALSE] return(target_words) } segword2 <- sapply(X = segword, FUN = removewords, mystopwords) #查看已删除后的分词结果 segword2[[1]]

【数据挖掘】手把手教你做文本挖掘(图6)

相比与之前的分词结果,这里瘦身了很多,剔除了诸如“是”、“的”、“到”、“这”等无意义的次。

判别分词结果的好坏,最快捷的方法是绘制文字云,可以清晰的查看哪些词不该出现或哪些词分割的不准确。

#绘制文字图 word_freq <- getWordFreq(string = unlist(segword2)) opar <- par(no.readonly = TRUE) par(bg = 'black') #绘制出现频率最高的前50个词 wordcloud(words = word_freq$Word, freq = word_freq$Freq, max.words = 50, random.color = TRUE, colors = rainbow(n = 7)) par(opar)

【数据挖掘】手把手教你做文本挖掘(图7)

很明显这里仍然存在一些无意义的词(如说、日、个、去等)和分割不准确的词语(如黄金周切割为黄金,医药切割为药等),这里限于篇幅的原因,就不进行再次添加自定义词汇和停止词。

#将已分完词的列表导入为语料库,并进一步加工处理语料库 text_corpus <- Corpus(x = VectorSource(segword2)) text_corpus

【数据挖掘】手把手教你做文本挖掘(图8)

此时语料库中存放了76条***的分词结果。

#去除语料库中的数字 text_corpus <- tm_map(text_corpus, removeNumbers) #去除语料库中的多余空格 text_corpus <- tm_map(text_corpus, stripWhitespace) #创建文档-词条矩阵 dtm <- DocumentTermMatrix(x = text_corpus, control = list(wordLengths = c(2,Inf))) dtm

【数据挖掘】手把手教你做文本挖掘(图9)

从图中可知,文档-词条矩阵包含了76行和7939列,行代表76条***,列代表7939个词;该矩阵实际上为稀疏矩阵,其中矩阵中非0元素有11655个,而0元素有591709,稀疏率达到98%;最后,这7939个词中,最频繁的一个词出现在了49条***中。

由于稀疏矩阵的稀疏率过高,这里将剔除一些出现频次极地的词语。

#去除稀疏矩阵中的词条 dtm <- removeSparseTerms(x = dtm, sparse = 0.9) dtm

【数据挖掘】手把手教你做文本挖掘(图10)

这样一来,矩阵中列大幅减少,当前矩阵只包含了116列,即116个词语。

为了便于进一步的统计建模,需要将矩阵转换为数据框格式。

#将矩阵转换为数据框格式 df <- as.data.frame(inspect(dtm)) #查看数据框的前6行(部分) head(df)

【数据挖掘】手把手教你做文本挖掘(图11)

统计建模:聚类分析

聚类分析是文本挖掘的基本应用,常用的聚类算法包括层次聚类法、划分聚类法、EM聚类法和密度聚类法。

这里使用层次聚类中的McQuitty相似分析法实现***的聚类。

#计算距离 d <- dist(df) #层次聚类法之McQuitty相似分析法 fit1 <- hclust(d = d, method = 'mcquitty') plot(fit1) rect.hclust(tree = fit1, k = 7, border = 'red')

【数据挖掘】手把手教你做文本挖掘(图12)

这里的McQuitty层次聚类法效果不理想,类与类之间分布相当不平衡,我想可能存在三种原因:

1)文章的主干关键词出现频次不够,使得文章没能反映某种主题;

2)分词过程中没有剔除对建模不利的干扰词,如中国、美国、公司、市场、记者等词语;

3)没能够准确分割某些常用词,如黄金周。

总结

所以在实际的文本挖掘过程中,最为困难和耗费时间的就是分词部分,既要准确分词,又要剔除无意义的词语,这对文本挖掘者是一种挑战。

文中数据和脚本可至如下链接下载:

http://yunpan.cn/cupyBj9xTkHe7 访问密码 a88b

刘顺祥,数据分析师,热爱数据分析与挖掘工作,擅长使用R语言,目前自学Python语言。

本文由作者刘顺祥授权数据人网发表,并经数据人网审核。转载此文章需经作者同意,并请附上出处(数据人网)及本页链接。原文链接:http://shujuren.org/index.php/Article/update/aid/108

更多精彩内容,请点击阅读原文。

数据人网(http://shujuren.org),数据人学习、交流和分享的家园,专注于从数据中学习,努力发觉数据之洞见,积极利用数据之价值。为“让人懂数据、用数据”之使命坚持做点事情。大家可以来投稿,做分享和传播,可以给反馈。您有什么想法,请反馈给我们,谢谢。数据人网,我们共建和共享。

***推荐

数据科学自媒体,从数据里面学习。

长按二维码图片,选择识别二维码图片,添加即可。

【数据挖掘】手把手教你做文本挖掘(图13)

推荐文章